令和3年度 岡山白陵高等学校入学試験

数 学 解 答 用 紙

1 28点

- (1) x = 4, y = 3
- $x = 1 \pm \sqrt{3}$

(2)

3

(3)

- 0.2236
- $(5) \qquad 43 \times 47$
- (6) $16\sqrt{3}$

(7) 2:1

(4)

2 12点

(1) 6 通り

 $\frac{5}{27}$

- 3 16点

- (-1,1)
- (3) (2, -2), (2, 0), (2, 1)

4

- $\begin{array}{|c|c|c|c|} \hline (1) & x = 2 & 0 & 2 & 3 \\ \hline \end{array}$
- $x = -\sqrt{10} \circ \xi = -\sqrt{10} + 4$

- $(2) \qquad 0 \leq p < 1$
- $(3) \mid \bigcirc \downarrow \emptyset, \quad x = p + \alpha$

これを②に代入すると、 $4\alpha - 7(p + \alpha) + 3 = 0$

 $-3\alpha - 7p + 3 = 0$ $\ \ \, \ \, \ \, \ \, \ \, \ \, \alpha = -\frac{7}{3}p + 1$

(2)より, $0 \le p < 1$ だから, $-\frac{4}{3} < lpha \le 1$

0

 α は整数だから, $\alpha = -1, 0, 1$

αの値

- α を p で表した式 $\alpha = -\frac{7}{3}p + 1$
- $\alpha = -1$, 0 , 1

 $(4) \qquad -\frac{1}{7} \, , \frac{3}{7} \, , 1$

5

 \triangle FBD \triangle ECG において,

DA//CEより、同位角は等しいから、

$$\angle BFD = \angle CEG = 90^{\circ} \cdots (1)$$

また,

 $\angle BDF = \angle BAD$ ($\triangle ABD$ が BA = BD の二等辺三角形だから)

 $= \angle BAC - \angle FAG$

= 90° - ∠FAG

 $= \angle AGF$ ($\triangle AFG$ において $\angle AFG = 90$ ° だから)

=∠CGE (対頂角は等しいから)

よって、 $\angle BDF = \angle CGE \cdots ②$

①, ②より, 2組の角がそれぞれ等しいから,

 $\triangle FBD \circ \triangle ECG$

(2)	40°	
(3)	AG $\sqrt{5}$	$\frac{4}{3}\sqrt{5}$

得 点