数学解答用紙①

1 32点

(1)	$\frac{2x+5}{3}$	(2)	(y+1)(2x-y+1)
(3)	$\frac{7\pm3\sqrt{5}}{2}$	(4)	$x = \frac{12}{5}, y = -3$
(5)	$4+3\sqrt{3}$	(6)	70
(7)	$\frac{\sqrt{3}}{3}$	(8)	24

2

(1) 36 通り (2) 27 通り (3) 15 通り	(1)	36	通り	(2)	27	通り	(3)	15	通り	
------------------------------------	-----	----	----	-----	----	----	-----	----	----	--

3

(2) 1回の操作で取り出した食塩水の重さをx gとする。 ただし、 $0 \le x \le 100$ である。

2回の操作が終わった後の食塩の重さについて方程式を立てると

$$25 \times \left(1 - \frac{x}{100}\right)^{2} = 15.21$$

$$\left\{5 \times \left(1 - \frac{x}{100}\right)\right\}^{2} = \left(\frac{3 \times 13}{10}\right)^{2}$$

$$0 \le 5 \times \left(1 - \frac{x}{100}\right), 0 < \frac{3 \times 13}{10} \ \text{l} \ \text{l} \ \text{l}$$

$$5 \times \left(1 - \frac{x}{100}\right) = \frac{39}{10}$$

$$100 - x = 78$$

$$x = 22$$

これは $0 \le x \le 100$ を満たす。

よって、1回の操作で取り出す食塩水の重さは22gである。

22 g

受験番号

数学解答用紙②

4
20点

(1) AFCと△DFEにおいて

仮定より

ADは∠OACの二等分線なので

 $\angle CAF = \angle OAD \cdots \bigcirc$

線分OAと線分ODはともに円の半径なので

△OADはOA = ODの二等辺三角形になり

 $\angle OAD = \angle EDF \cdots 2$

①、②より

 $\angle CAF = \angle EDF \cdots 3$

また、対頂角は等しいので

 $\angle AFC = \angle DFE \cdots 4$

③、④より二組の角がそれぞれ等しいので

 $\triangle AFC \circ \triangle DFE$

(2) (1)より $\triangle AFC$ $\hookrightarrow \triangle DFE$ なので $\angle ACF = \angle DEF \cdots$ ①

線分ABは直径なので∠ACB = 90°···②

①、②より∠DEF = 90°

これと対頂角より∠OEB = ∠DEF = 90°

したがって△OBEは直角三角形である。

(3) $CE = \sqrt{21}$

 $AD = \sqrt{70}$

受験 番号 小計

数学解答用紙③

5
24点

(1)	l :	y = x + 4	С (а	,	<i>a</i> + 4)	

(2)
$$\frac{1+\sqrt{17}}{2}$$
 (3) $\frac{-1+\sqrt{17}}{2}$

(4) (i) 直線 l が辺ADと交わるとき

辺ADと直線ℓの交点をMとすると

直線 ℓ によって \triangle MDCと台形MABCに分けられる。

点Mが辺ADの中点となるとき

台形MABC: △MDC=3:1となる。

このとき、Mの座標は
$$\left(-a, \ \frac{a^2+a+4}{2}\right)$$

と表されるので

(ii) 直線ℓが辺ABと交わるとき

辺ABと直線ℓの交点をNとすると

直線ℓによって△NBCと台形NADCに分けられる。

点Nが辺ABの中点となるとき

台形MADC:△NBC=3:1となる。

このとき、Nの座標は点 $(0, a^2)$

と表されるので

$$a = 2$$

(i)(ii) $\sharp \ 0 \ \alpha = 1, 2$

1,2

受験番号

得点